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Abstract 

Chinova Resources Pty Ltd’s Osborne Mine is located in Northern Queensland, approximately 800 km inland 

from the eastern coast. It commenced operations in 1995 with the development of an open pit mine.  In 

1996 the operation transitioned to underground mining.  In 2015, Osborne will have been in operation for 

20 years and will have mined 29 Mt of ore.  The site has produced 672, 420 t of copper and 673,295 oz of 

gold.  

Osborne Mine produces approximately 112,000 t of tailings per month.  In 2003, following progressive 

evaluation and development of a high density discharge tailings management system, Osborne 

implemented the first of two trial depositions forming advancing cones of deposited tailings within their 

TSF2 site.  These trials proved successful and, following successful permit applications to the regulators, 

TSF2 was converted to high density thickened tailings discharge.  The principal benefit of this change was in 

the reduction of construction costs for confining embankments.  However an additional major benefit lay in 

a reduction of make-up water volumes.  The majority of water loss in the process water circuit occurs in the 

tailings system as a result of evaporation.  High density thickened discharge provides a means for 

significantly reducing water losses, since, by recovering and re-using more water at the thickener and in the 

plant, less water is discharged onto the tailings facility so there is less water available for evaporation.  High 

density thickened discharge also enabled a significant improvement in operating costs. 

High density thickened discharge operations at Osborne have had to be continuously modified and adjusted 

as ores from satellite mines have been processed to supplement the diminishing Osborne mine ore.  

Mineralogical influences of the supplementary ore significantly affect the thickening and beaching 

characteristics of the tailings slurry particularly in the most recent operating period.  However, through 

appropriate modifications and adjustments, the benefits of high density thickened discharge have been 

retained. 

The resulting TSF landform is that of a shallow-sloped shedding mound so that there is no need to retain 

water on the TSF.  Chinova has been proactive with ongoing site monitoring and rehabilitation with a view 

to shedding runoff to the environment.  Their site plans include ensuring that the discharge water from the 

site will meet the stock-water guidelines and , and that the erosion gullies forming in TSF cover materials or 

on the side slopes of confining embankments will not result in exposure of the tailings over 500 years. 

1 Introduction 

Osborne Mine in Northern Queensland, Australia is located in outback Australia approximately 800 km 

south west of Cairns as indicated in Error! Reference source not found..  It is an underground copper-gold 

operation that mines an ironstone deposit which hosts magnetite and silica with chalcopyrite, pyrite, and 

pyrrhotite.  The mine setting is arid with an average annual rainfall of 335 mm and an annual average 

evaporation rate of 3,150 mm.  Rainfall generally occurs between October and March and is largely 

dependent on cyclone activity over the north of the Australian continent.  The majority of make-up water 

for the mine is supplied from boreholes located on the edge of the Great Artesian Basin, some 28 km from 

the mine site.  While there are vast quantities of water stored in the basin, regulators are conscientious in 
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encouraging users to maximise water use efficiency.  In addition, Osborne’s sustainability commitments 

serve as major drivers in the development of strategies to reduce water use from the Great Artesian Basin. 

 

Figure 1 Locality map 

It was in view of the water sustainability issues that Osborne decided to consider High Density Thickened 

Tailings (HDTT) production; the majority of water loss on a TSF is through evaporation and seepage and it 

followed that if the volume of water discharged onto the TSF were reduced then evaporation and seepage 

would reduce.  Assessment of the feasibility of HDTT began in 2000 with a view to implementing this on a 

new TSF, TSF2, which was in the process of being sited.  The assessment included rheological, pumping and 

piping assessments, as well as beaching assessments, that then led to progressive increases in slurry density 

and trials on the existing TSF, TSF1.  However, top management saw this foray into HDTT as high risk and 

insisted on a formal risk assessment workshop with the Regulator as a workshop participant to assist in 

assessing the risk that HDTT may be rejected out of hand should applications to adopt HDTT be submitted 

for regulatory approval.  The Regulator was not averse to the approach, but set a requirement that a 

thorough geotechnical assessment with specific evaluation on the liquefaction risks would need to form 

part of any submission.  Top management decided against HDTT and the design of TSF2 proceeded on the 

basis of a TSF design for conventional tailings.  TSF2 was subsequently constructed and commissioned as a 

conventional TSF whereby initial starter embankments are constructed and are progressively raised on an 

upstream basis. 

The starter embankments were sized on the basis that they should provide two years of containment 

before the first raise with the tonnage to be stored set at 60% of production, as it was planned that 40% of 

the tailings would be diverted directly to underground mine backfill.  By the time of commissioning TSF2, 

the advantages of raising the slurry percent solids from 50% to 65% in terms of smaller pumping volume 

and lower water usage were already entrenched in operations.  However, a combination of a steeper beach 

slope as a result of the higher percent solids and the fact that no underground backfill was diverted from 

the TSF resulted in the tailings reaching the top elevation of the starter embankments after only 9 months 

as opposed to the planned 2 years. 

To avoid the need for further capital expenditure, a decision was made by mine management to buy time 

by using HDTT.  Thickening processes were further refined and a full scale trial commenced on TSF2.  The 

trial enabled field testing of the deposited tailings and comparison with the laboratory testing to assess 

geotechnical and liquefaction characteristics.  Based on the full scale trial experience, and armed with 

appropriate geotechnical data, Osborne made application to convert the facility from conventional to HDTT 

operation and this application was subsequently approved by the regulators. 
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Since this initial approval the footprint of TSF2 has been extended to accommodate additional ore to be 

brought in from satellite mines.  However, the ore from the satellite mines proved to be of different 

mineralogy to the Osborne ore and this resulted in reduced thickener efficiency and lower slurry density 

with a concomitant flattening of beach slope.  Blending of the ore, changes in flocculant types and dosages 

and a number of mechanical modifications went someway to improving slurry density but it was necessary 

to amend the discharge method as well as to design for a flatter slope which subsequently led to further 

increases in the footprint of the TSF. 

TSF2 is due to be decommissioned in the third quarter of 2015.  Closure planning has been effected and is 

in the final stages of approval by the Regulator.  The facility is a shedding landform and appropriate covers 

and erosion control measures have been designed and trialled in arriving at an appropriate cover design.  In 

all, some 7 Mt of tailings will have been stored in the facility. 

This paper describes the Osborne tailings, summarises rheological, pumping and beaching assessments as 

well as geotechnical investigations, and documents the progressive development of the facility from 

inception in 2001 to eminent closure in 2015.  It sets out the cover design and trials that have formed the 

basis of the final landform closure design. 

2 The Osborne tailings materials 

2.1 Mineralogy 

While the tailings comprise mostly magnetite it also contains a number of sulfide minerals, notably pyrite 

with traces of chalcopyrite, together with gypsum.  Sulfides make up 2% to 4% of the tailings mass.  The 

sulfides are moderately reactive and to counter their acid generating capacity lime is added in the course of 

mineral processing.  Gypsum is produced as a result of the neutralisation reactions. 

The high iron content of the tailings causes the particle specific gravity to be 3.4 to 3.6. 

2.2 Particle size distribution 

Figure 2 shows typical particle size distributions for the tailings measured using a sieve and hydrometer.   

From Figure 2 it is evident that: 

• 60% of the tailings is finer than 75 microns. 

• The maximum particle size is 2 mm. 

• Approximately 25% of the tailings have a particle size in a narrow range from 0.06 mm to 

0.08 mm. 
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Figure 2 Typical particle size distributions of the tailings 

2.3 Tailings geochemistry 

Geochemical testing and assessment of the tailings material confirmed that the tailings produce acidity and 

sulfate upon oxidation.  The reaction rate is, however, relatively slow.  The average sulfide based sulfur 

concentration is 2.4% for TSF2.  The presence of gypsum in significant quantities in the tailings indicates 

that acid-base reactions occur early in the tailings deposition history, probably as soon as lime is added to 

the slurry immediately prior to deposition of the tailings.  Acid generation continues within the deposited 

tailings mass.  The acid-base accounting test work indicates there is insufficient neutralisation capacity 

within the tailings to buffer all potential acidity. 

TSF2 has an acid producing potential of 42.5 kg/t of tailings.  Calcium minerals and magnesium minerals are 

consumed in the acid-base reaction and their derivatives report to leachate. 

Water emanating from TSF2 will have issues in respect of: 

• pH, conductivity and sulfate. 

• Cu, Zn, Co, Ni and Se. 

TSF2 was sited to take advantage of the low permeability of the intact Mesozoic silcrete rock underlying the 

site and underdrains and seepage cutoff trenches up to 5 m deep were incorporated into the design of the 

embankments to both the TSF and the associated Reclaim Pond. 

3 Assessment of the feasibility of producing and managing HDTT 

Assessment of the feasibility of the production and management of HDTT began in 2000 with slurry 

rheological, pumping and beaching assessments in tandem with the assessment of potential modifications 

to the thickening circuit.  These are set out below. 

3.1 Slurry rheology 

3.1.1 Laboratory testing 

Laboratory viscometer testing was undertaken on the Osborne tailings at a range of solids contents.  It was 

found that even at high percent solids the tailings settled in the viscometer so that the viscometer results 

were unreliable.  Figure 3 below shows the flow curves obtained. 
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Figure 3 Laboratory rheological testing results on Osborne tailings 

Slurries settling on a beach do so at shear rates that are generally less than 30 s
-1

 and since the flow curves 

were particularly unreliable in the low shear rate zone, it was necessary to abandon the use of the 

laboratory rheological measurements.  Since the problem relates to settling out of the solids it was decided 

to set up rheological measurement test that would work with the settling out.  To this end, small scale 

flumes were selected as described in the next section. 

3.1.2 Flume testing 

The Osborne tailings were deposited at a rate of 0.8 L/s into a flume measuring 7 metres long by 0.5 metres 

wide (McPhail 2008). Figure 4 shows the resultant beaches of slurry deposited into the flumes at a range of 

solids concentrations (68 to 74% SBW) along with corresponding post-calibration profiles using the McPhail 

model (McPhail 1995, 2008, 2014 and Charlebois et al 2013). 

The flume results have been re-analyzed using the latest analytical methods to determine shear rates and 

shear stresses at points down the beach formed in the flume (Charlebois et al 2013).  Particular emphasis 

was placed on estimating the yield stress.  The results of the analyses are presented in Figure 5. 
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Figure 4 Results of flume testing and calibration of the McPhail stream power-entropy 
model for the Osborne thickened tailings at a range of solids concentrations 
(68% to 74%)   

 

 

Figure 5 Yield stresses from the small scale flume tests 

3.1.3 Back analysis of full-scale beach profiles on TSF1 

The flume tests provided a theoretical basis for proceeding with full scale trials.  These were conducted as 

improvements to the thickening technology were developed (McPhail et al. 2004) over a period of almost 2 

years, with the first step-up in percent solids from 55% to 65%.  The deposition at 65% solids, and 

subsequently at 68% solids, took place as part of routine operations on TSF1 while the initial earthworks for 

TSF2 were being constructed. 

Beach modelling on the trial beach profiles was used to compliment the flume tests and provide improved 

data on which to ultimately justify carrying out further process plant modifications to raise the percent 

solids beyond 68%.   

The McPhail model was used to analyze the original 55% solids beach, as well as the two full scale operating 

beaches formed at 65% and 68% solids on TSF1.  Figure 6 shows the measured and calibrated profiles. 
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Evaluation of the beaching analyses has been repeated with current methods of analysis which now permit 

the backward construct of representative flow diagrams for the tailings.  More importantly, the 

understanding of the role of rheology in controlling the beaching behaviour has been refined and 

incorporated into the analyses.  The yield stresses have been back-calculated from the full scale beach 

profiles and added to the table of yield stresses from the flume testing.  Figure 7 shows the resulting plot.  

It is evident from Figure 7 that the results from both flume tests undertaken for 68% solids are outliers 

from the trend of the other results.  These have therefore been excluded and the best fit line from the 

results other than those for the 68% flume is indicated on Figure 7. 

 

Figure 6 Beach profile predictions (using the calibrated model) and measure full scale 
beaches formed by conventional Osborne tailings (55%) and by thickened 
Osborne tailings (66.5, 68, and 74%) 

 

 

Figure 7 Yield stresses from the flume and full scale trials on TSF1 
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3.2 Slurry pumping characteristics 

Slurry testing was conducted by Paterson and Cooke Consulting Engineers in the pipe loop located at 

Alrode in Johannesburg.  Tests were conducted a range of water contents from 50% solids to 74% solids 

(slurry relative densities of 1.56 to 2.12, respectively) to determine settling rates, friction characteristics 

and pump de-rating factors.  Figure 8 shows some of the results of the testing. 

 

 

Figure 8 Pressure loss and settling velocities 

4 Thickened tailings deposition trial 

4.1 Set up of the trial 

Figure 9 shows a series of isometric views of the thickened trial on the new tailings facility.  The isometrics 

are produced from detailed topographic surveys of the original ground and the deposited tailings surface. 
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Use was made of a natural ridge within the new tailings facility to form a launch point from which to 

advance a single discharge pipe.  As tailings beached and filled to the pipe-end, additional lengths of pipe 

were added and the discharge point progressively advanced forwards.  In this way an advancing cone was 

formed.  In addition, with each advance, the pipe discharge elevation was raised so that as the cone 

advanced the advancing face was at a rising elevation.  This, together with the natural fall in the 

topography, enabled the formation of a cone face of approximately 10 m in vertical height from the end of 

the beached tailings to the discharge head.  To control the deposition direction, a 60 degree “Y” section 

was introduced in one pipe length before the discharge point and discharge alternated between the two 

branches. 

 

Figure 9 Isometric views of the thickened trial on the new tailings facility 

The slopes of the mound were 1 in 20 for the upper half of the beach length and 1 in 30 for the lower half, 

giving an average beach slope of 1 in 25. 

Figure 10 and Figure 11 below show two cross-sections through the thickened mound.  The locations of 

piezocone soundings are also indicated on the sections.   
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Figure 10 Section through the thickened mound from the outer confining 
embankment on the left to the pool wall on the right (vertical scale exaggerated) 

 

Figure 11 Section through the thickened mound along the delivery line route (vertical 
scale exaggerated) 

Approximately 270,000 tonnes of tailings had been placed in the mound at the time of the survey.  At an 

average measured in situ dry density of 2 t/m3, this represents approximately 135,000 m3 of tailings fill. 

4.2 Density control 

To achieve the above special care was taken to ensure that only high density thickened tailings was 

discharged on the trial mound.  A by-pass arrangement that was triggered as soon as the density dropped 

below a slurry relative density of 2 (70% solids) was incorporated into the flow control system.  Flushing 
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was kept to the minimum required to ensure that the delivery line would be clear enough clear itself on the 

recommencement of slurry pumping. 

On average, over the duration of the trial, the slurry density has been maintained at an average of 2.06 

(72% solids) with regular excursions to 76% solids. 

4.3 Piezometric measurements 

The mound was instrumented using both standpipe piezometers as well as pore pressure transducers.  The 

piezometers comprise PVC pipe slotted over the bottom 1 m and covered with a geofabric sock.  Figure 12 

shows the locations of the piezometers and Figure 13 shows typical standpipe piezometer readings. 
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Figure 12 plan of thickened mound showing locations of piezometers (crosses) and 
piezometer cone soundings (triangles) 

 

Figure 13 Typical standpipe piezometer measurements tracked against changes in 
tailings elevation at the standpipe 
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The rise and dissipation of the water levels is clearly evident from the piezometers; during deposition 

particular attention was paid to the extent to which piezometer levels recovered between deposition 

episodes, as well as to the rising trend in the dissipated water level.  It is also evident that the tailings coped 

well with the rates of rise in excess of 20 m per year.  

Figure 14 shows a sequence of survey renders and indicates development of the southern and northern 

trial mounds. 

 

Figure 14 Sequence of survey renders showing development of the trial mounds 

4.4 Storm management 

Raising the embankments hydraulically using advancing cones introduces storm water management issues 

since there is runoff from the slope face to the outer parts of the TSF.  To accommodate and control this 

storm water, storm water control trenches were constructed along and on the inside of the existing toe 

starter embankments, as indicated in Figure 15, which also shows the locations of spillways which enable 
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the water to be discharged at ground level and directed to the reclaim pond located to the immediate 

south of the TSF. 

 

Figure 15 Location of storm management trenches and spillways 

5 Tailings geotechnical assessments 

In the course of the trial, samples were collected from the tailings beach and submitted for geotechnical 

testing to Pretoria University where particle size distributions were determined and stress path and 

consolidation testing was carried out.  In addition, field density tests were conducted by local laboratory 

personnel.  The sections below summarise pertinent results. 

5.1 Critical state testing 

A vital issue for the regulator in respect of the method of placement of the thickened tailings is that of 

liquefaction induced by slope failure.  It is common to assess liquefaction potential by determining whether 

the material is contractive.  Stress path testing in the method described by Papageorgiou (2003) was 

conducted. 

The stress path testing confirmed that the tailings could be contractive if at sufficiently high void ratio.  The 

tests were conducted on loose hand-tamped samples, saturated, consolidated and then tested undrained 

with pore pressure measurements.  Figure 16 shows the stress paths for tests at a range of initial densities 

and Figure 17 shows the initial and final void ratios as well as the derived critical state line. 
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Figure 16 Stress path testing at a range of initial densities 

 

Figure 17 Critical state line 
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Tailings at stress and void ratio states that plot below the envelope indicated in Figure 17 are considered 

dilatant while those that plot above the envelope are considered contractive.  Tailings that plot within the 

envelope are considered semi-contractive.  

5.2 Rowe cell testing 

To assess the likely stress state of an initially slurried sample of tailings undergoing drained consolidation, 

testing was conducted in a Rowe Cell.  This approach allows the determination of consolidation coefficients 

and permeabilities at a range of stress states and also allows the determination of the consolidated void 

ratio at each stress. 

Figure 18 shows void ratio vs. square root of time plots for an initially slurried sample of tailings from which 

the coefficient of consolidation and the permeability at each stress state were determined as indicated in 

Table 1. 

Figure 19 below shows the consolidation curve for the initially slurried sample. 

 

Figure 18 Void ratio vs Root time curves from the Rowe Cell 
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Figure 19 Consolidation curve from the Rowe Cell 

Table 1 Coefficients of consolidation and permeabilities from the Rowe Cell tests 

Vertical 

effective stress 

(kPa) 

t90  

(min) 

Cv 

(m2/yr) 

k  

(m/s) 

25 0.77 13362 8.5 × 10-7 

50 1.32 7736 4.9 × 10-7 

100 1.42 7224 3.9 × 10
-7

 

200 1.27 8083 2.4 × 10-7 

400 1.39 7347 1.0 × 10-7 

The following points are noteworthy, given the fine-grained nature of the tailings: 

• The coefficients of consolidation are high, indicating that the tailings drain well.  This is in line with 

in situ observations. 

• The permeabilities are relatively high – approaching that for a fine grained sand at low stress 

levels. 

5.3 Lab-based assessment of liquefaction potential 

To assess the liquefaction potential of the tailings, the consolidation test results were plotted together with 

the critical state points as indicated in Figure 20.  The vertical stress in the consolidation test was used to 

determine the parameter p’ using the following equation: 
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 p’ = [σv’ * (1+2K0)]/3 1 

where σv’ is the vertical effective stress in the odometer and K0 the coefficient of earth pressure at rest, 

which is equal to 0.425 for an effective angle of friction of 32 degrees, a value representative of the tailings 

based on past testing. 

 

Figure 20 Plots of the critical state and the 1-D consolidation data 

It is evident from Figure 20 that: 

• The slurried sample is in the dilatant range stress state from the outset of the consolidation test. 

• The slurried sample enters the semi-contractive range at a p’ of 80 kPa (σv’ = 130 kPa which at a 

density of 2.2 t/m3 is approximately 6 m of tailings) 

• An extrapolated consolidation line meets an extrapolation of the critical state line at p’ = 500 kPa 

(σv’ = 810 kPa which at a density of 2.2 t/m3 is approximately 37.5 m in height.) 

• Since the maximum tailings slope height will be less than 37.5 m the tailings are unlikely to cross 

the extrapolated intersection point and will therefore, at worst, exist in a semi-contractive (but 

nonetheless dilatant) state. 

Based on the above it was deduced that the tailings are unlikely to liquefy within the stress range of the 

TSF. 

5.4 Field-based assessments 

To verify the consolidation parameters measured in the lab as well as provide a check on the piezometer 

measurements four piezometer cone soundings were carried out in the tailings at the locations indicated in 

Figure 11.  The results for the soundings at the deepest tailings locations are indicated in Figure 21 and 

Figure 22. 
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Figure 21 Piezometer cone sounding results at a location 40 m behind the crest 
point 
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Figure 22 Piezometer cone sounding results for a test at the crest point 

The following points are noteworthy from an assessment of the piezometer cone results: 

• There is no sign of excess pore pressure 

• Dissipation rates are similar to those measured in the Rowe Cell, which indicates that the lab test 

is reasonably representative of the field situation 

• Water pressures in the slope are in reasonable agreement with the standpipe piezometers. 
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• The cone resistance is greater than 0.5 MPa and, in the case of the sounding at the crest point, is 

generally 2 MPa.  It is interesting to note the soft zones in the sounding back from the crest.  This 

is attributed to variations in the slurry in the course of the trial. 

5.5 Slope stability assessments 

Application of the consolidation and seepage data to slope stability analyses has shown that factors of 

safety are above 2 and probabilities of failure below 1 in 10,000 even for very conservative assumptions on 

pore pressures, drainage conditions and shear strength.  This is in keeping with the flat slope angles that 

are generated by the thickened tailings mound. 

5.6 Erosion parameter assessments 

Erosion of the beaches of tailings placed at 50% solids is known to be very low.  On the other hand, 

thickened tailings result in considerably steeper beaches and the question of erosion of these slopes both 

during operation and after decommissioning needs to be assessed.  To this end, erosion testing and 

modelling has been carried out.  The erosion testing has been carried out using a rainfall simulator which 

has been designed to ensure that the kinetic energy transmitted by the simulated rainfall is similar to 

natural rainfall.  Gullying is assessed by over-land flow tests.  Figure 23 below shows the testing on both 

tailings as well as material that would be used as topsoil or “growth medium”.  In both test types 

sedimentation samples are collected at short time intervals and flow rates accurately measured. 

 

 

Figure 23 Rainfall and gulley erosion simulations (top is tailings and bottom is 
growth medium) 

The results of the field measurements have been used to derive erosion parameters that have been applied 

in the dynamic erosion modelling program SIBERIA (Willgoose et al. 1989).  SIBERIA models long term 

landform evolution and works with a digital terrain model (DTM) of the surface.  The DTM is adjusted with 

each iteration in the simulation which means that the model is able to simulate gulley formation. 
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6 Tailings operation experiences 

Production of the HDTT was effected using the available 9 m high rate thickener at Osborne in combination 

with a nest of cyclones which were originally installed at the time of mine commissioning to generate 

underground backfill but had never been used.  Overflow from the cyclone nest is directed to the thickener 

and underflow from the thickener is combined with the underflow from the cyclone nest at a pump sump.  

A process flow diagram of cyclone/thickener circuit is shown in Figure 24 and a photo of the setup is shown 

in Figure 25. 

 

Figure 24 Process flow diagram for Osborne HDTT 

 

Figure 25 Cyclone and thickener to generate HDTT at Osborne 
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6.1 Plant and equipment changes to effect HDTT 

A summary of the modifications to the plant which were made to allow production of high density tailings 

were as follows: 

• Tuning of all control loops from grinding through floatation and tailings to allow stable operation 

at desired density. 

• Reduction in tailings cyclone spigot sizes from 70 mm to 57, 51, 47, 45 and 41 mm to increase 

underflow density and send more solids to the thickener. 

• Increase of the tailings thickener feedwell deflector cone gap from 140 mm to 280 mm to handle 

increased flow to the thickener. 

• Modifications to the thickener underflow cone and piping to remove obstructions and allow freer 

gravity flow of underflow stream. 

• Installation of higher ranging bed mass gauge in thickener. 

• Installation of density gauges in the thickener underflow line and tailings pipeline to allow closer 

monitoring of operation and targeting of specific densities. 

• Change of flocculant product to better suit duty and allow higher density underflow. 

• Installation of second flocculant sparger in the thickener feedwell. 

• Installation of flow meter in the thickener underflow line. 

No additional thickening equipment has been required. 

6.2 New dam pumping and piping system 

The pumps provided for transferring the HDTT from the thickener circuit to the TSF are centrifugal with 

mechanical seals.  Two stages have been sufficient to date. 

Several aspects of the new pumping and piping system for TSF2 were designed specifically to suit the 

pumping and deposition of high density tailings. These included: 

• Design of the pipeline diameter and pressure rating to suit both HDTT as well as “normal” density. 

• Installation of a flow meters at the plant as well as at the valving station on dam wall to give an 

indication of line blockages and ruptures. 

• Installation of a pressure gauge at the valving station. 

• Increasing the capacity of the flushing system to allow the delivery lines to be cleared. 

• Installation of a camera to monitor flow from spigots. 

• Installation of a by-pass tailings pipeline to minimize the impact of potential line blockages. 

6.3 Operational changes 

The production and deposition of high density tailings required a number of operation changes and 

strategies had to be developed to minimize the potential for line blockages as well as allow for efficient 

deposition. Some of these changes and strategies are as follows: 

• Operating the thickener with a higher bed mass and flocculant dosage. 

• Operating the tailings hoppers at low levels to prevent a build up and subsequent slumping of 

solids in the hoppers. 

• Increased monitoring of operations with respect to densities, flows and pressures. 
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• Installation of a delivery pipeline flushing point as close as practical to the deposition point to 

allow flushing of the line without excessive scouring of the high density beach. The entire line can 

then be flushed to this point, after which only a brief flush of the spigot is required. 

• Diverting the flow at a high density spigot should the density fall so that the low density discharge 

does not scour the beach. This occurs immediately if the plant is shut down unexpectedly or if 

some major change occurs; it also happens if the density drifts low for around half an hour and 

efforts to increase the density are unsuccessful. 

• More regular monitoring and replacement of tailings cyclone spigots to ensure optimum density is 

maintained. 

• Operational strategies to increase the tailings density if it drops due to operation of the cyclones. 

A cyclone in the nest is turned off if possible, or if not possible then a combination of cyclones 

with smaller spigot diameters is brought on line. The bed mass in the thickener can also be raised 

and the flocculant dosage increased. 

6.4 Performance 

The performance of the plant while processing Osborne ore was reasonably steady with percent solids of 

between 72% and 76% being obtained for the majority of the time. Occasionally there was difficulty in 

maintaining density which was attributed to variability in the ore. 

While the pipe loop test work allowed the pumping pressures required to be predicted, when these 

pressures were compared with measurements while effecting trial depositions on TSF1 the predicted 

pressures were found to be too high.  A number of iterations of calculations were conducted after which a 

scale-up factor from the pipe loop test work was derived (0.38). The predicted pressures using this scaling 

factor matched very closely with those measured after commencing pumping to TSF2. 

The predicted pressure drops after applying the scaling factor were in the range of 0.28 – 0.46 kPa/m in the 

density range of 68% to 75% solids. These correspond to pressures of around 400-680 kPa at the furthest 

spigot, which were within the range of the operating measurements. The test work indicated that at 

densities exceeding 76% solids, the pumping performance would drop markedly with pressure drop per 

metre increasing rapidly. This was validated by operational experience. If the density increased above 

around 76%-78% solids for any length of time then the flow rate in the pipeline dropped and the pipe 

started to sand up. If this was not noticed and remedied quickly the line would choke completely and the 

emergency pipeline would have to be brought on line while the duty line was flushed.  This occurred 

several times, but it has always been possible to clear the duty line by flushing water; it has not been 

necessary to dismantle the line to allow clearing. 

6.5 Water savings 

Implementation of HDTT over the trial period proved that significant reductions in water loss are achievable 

as indicated in Figure 26, which shows that the specific water usage reduced from approximately 

0.5 m
3
/tonne of ore processed to approximately 0.3 m

3
/tonne of ore processed.  This translated into a 

reduction in average borefield abstraction from 81 m3/hr to 51 m3/hr; i.e. a reduction of 37% based on a 

percent of 75% which was being achieved over the trial. 
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Figure 26 Specific water usage pre and post commissioning of HDTT 

6.6 Summary of operating benefits 

The benefits of HDTT at Osborne have included: 

• The elimination of lifts to confining embankments.  Since these lifts commonly cost of the order of 

$2 M and are repeated every 2 to 3 years, elimination of the lifts represents a very significant cost 

saving. 

• A higher placed density for the tailings. 

• A reduction in water losses. 

• Lower seepage – piezometers show the water table within the TSF to be at foundation level even 

though the tailings are some 20 m in thickness. 

• An improvement in terms of responsible environmental behaviour and a reduction in post closure 

costs until the level in the artesian aquifer is restored. 

• A reduction in return water pumping volumes and energy. 

• An opportunity for progressive rehabilitation of the final tailings landform as a result of the 

advancing cone method of formation. 

7 Operations from 2006 to 2015 

In 2006 ore from Osborne began to be supplemented with ore from satellite mines.  Initially ores were 

batch processed resulting in significant changes in slurry characteristics when the non-Osborne ore was 

being processed.  Beaches flattened from 1:30 to 1:60 mainly due to the mineralogical differences in the 

ore.  This was addressed through a number of actions: 

• Ore blending and elimination of batch processing so as to dilute the impact of the ores from the 

satellite pits. 

• Flocculation testing to identify alternative flocculants and dosages to improve the thickening of 

the cyclone overflow materials. 

• Splitting of the flow at the discharge end of the pipe into three nearly equal discharges and 

ensuring that the smaller discharges were a minimum of 20 m apart so as to reduce the 

probability of the flows re-combining down the beach. 
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The above measures were effective in bringing the beach slope back to 1:40 to 1:45 depending on the 

satellite pit ore being blended and processed. 

Figure 27 shows survey renderings of TSF over the period from 2006 to 2012 and the modelled deposition 

to 2015. 

 

Figure 27 Survey renderings of TSF2 over the period 2006 to 2012 together with the 
modelled rendering for 2015 

Figure 28 shows an aerial photograph of the facility as at October 2014.  The reclaim pond is in the 

foreground. 
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Figure 28 Aerial photo of TSF2 as at October 2014 

8 Closure planning 

8.1 Cover trials 

In October 2009, the top surface of part of TSF1 was covered with a trial “store-and-release” closure cover 

made up of two layers: 

• A capillary break layer consisting of 0.5 m of coarse grained silcrete material – intended as a 

buffer layer to reduce salt uptake from the tailings into the next layer. 

• A “store-and-release” soil layer over the capillary break layer consisting of 0.6 m of topsoil or 

growth medium (identified as silty sand with some gravel size material) thickening to 1.4 m 

around the decant structure. 

The cover was instrumented using suction sensors and thermistors in several locations and has been 

monitored since January 2010, so as to observe the performance of the trial cover.  Three annual reviews of 

the instrumentation readings have been conducted and water balances for the cover developed so as to 

estimate the net percolation through the cover.  A net percolation of 11% of the annual rainfall has been 

derived.  This is deemed a practical estimate of the net percolation and has been carried forward to TSF2. 

8.2 Effectiveness of the capillary break layer 

In 2010, as part of a mine sale transaction, the northern part of TSF2, an area of some 58 ha opposite the 

processing plant (refer to Figure 29) was covered with a single layer of silcrete principally for dust control 

purposes.  The material in this layer is similar to that which would be used as a capillary break and varies in 

thickness from 0.3 m to 0.6 m. 
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Figure 29 Covered area on TSF2 

To assess the effectiveness of a potential silcrete capillary break layer, trial pits were excavated in 2013 into 

the dust control cover layer on TSF2 at the locations indicated on Figure 29 and samples were recovered at 

10 cm intervals with depth.  Salinity measurements on the recovered samples enabled the determination of 

the thickness of salt migration through the cover materials.  It was found that the salt had been drawn up 

into the cover to a thickness of 0.2 m and it was concluded that a capillary break layer greater than 0.3 m 

should be sufficient to prevent migration of the salts into the topsoil layer. 

8.3 Predicted erosional performance of the cover 

The steeper beach slopes on TSF2 and the shedding nature of the landform suggest that a key cover design 

issue is that of long term erosion.  A design objective of ensuring that no gulleys in the cover will penetrate 

the tailings over a period of 500 years was set by Osborne.  SIBERIA, a long term landform modelling 

program that is able to model gulley formation, has been used in assessing the long term erosional 

performance of the trial cover if this were to be placed on TSF2.  Parameters from the rainfall simulation 
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trials described in Section 5.6 above were applied and it was found that where beach slopes are steeper 

than 1:30 it is necessary to provide additional thickness to the growth medium layer. 

The proposed cover for the steeper slopes has been designed as follows and the typical proposed cross-

section is presented in Figure 30: 

• 0.2m rock mulch layer to promote infiltration to the growth medium layer, overlying; 

• Growth medium to a total depth of 0.8 m, based on: 

○ 0.5 m nominal surface cover to account for gulley formation, plus; 

○ 0.15 m to account for long term cover sheet erosion that could occur, plus; 

○ 0.15 m as a safety factor, overlying; 

• 0.5 m underlying capillary break layer (silcrete) to act as a buffer layer on top of the existing 

tailings, to reduce any potential uptake of salts from the tailings. 

 

Figure 30 TSF2 Cover – Typical Cross-Section for Steep Slopes 

Slopes that are flatter than 1:30 are to receive only a 0.5m growth medium layer. 

8.4 Post closure runoff 

The cover materials to be used on TSF2 will be sourced from natural materials pre-stockpiled at the time of 

construction of the initial works.  The materials are uncontaminated and consequently runoff from the 

cover should be uncontaminated.  Therefore, post closure, the intention is that once it has been confirmed 

that runoff from the cover is of acceptable discharge quality the runoff will be discharged directly to the 

environment. 

8.5 Post closure seepage control 

Seepage arising from the net percolation will naturally emerge in the reclaim pond below TSF2.  This 

seepage will be contaminated and unsuitable for discharge.  Post closure the seepage will be captured 

using a seepage collection trench and discharged into a lined section of the reclaim pond positioned at the 

lowest point.  All natural runoff will be diverted around this lined area which will serve to evaporate the 

seepage and any rainfall directly onto the area.  Sizing of the area has been carried out using a long term, 

climate change adjusted, water balance. 

9 Conclusions 

Implementation of HDTT at Osborne mine has proved to be both manageable and beneficial in terms of 

operations, the environment, and sustainability.  It took some time to convince top management that HDTT 

would deliver on the benefits without significantly raising risk levels on the mine but this allowed for 

thorough assessment of beaching, pumping, thickening and geotechnical considerations.  The end result is 
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a TSF landform that is practical to both cover and close out, and one that blends into the natural 

environment.  Cost benefits in terms of avoidance of embankment raises have been very significant. 
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